Transcriptome-wide studies on mRNA tailing and investigation of stress responses in immune cells

Jaechul Lim, D.V.M., Ph.D. College of Veterinary Medicine, Seoul National University, Rep. of Korea

The Kei-ichiro Maeda Memorial T&C Award

Sep 12, 2023

My academic journey from veterinary medicine to basic science

B.S./D.V.M.

Seoul National University College of Veterinary Medicine

Seoul National University School of Biological Sciences

2005-2011

Ph.D.

Postdoc

Yale School of Medicine Department of Immunobiology

2011-2017

2017-2023

Post-transcriptional modifications of messenger RNA

The epitranscriptomics

Davalos et al., Cell, 2018

Chang*, Lim* et al., Mol Cell, 2014

Uridylation facilitates global mRNA degradation

- 1. TUT4 and TUT7 specifically uridylate deadenylated mRNAs and thereby facilitate global mRNA decay.
- 2. mRNAs with short A tails (<~25 nt) lose PABP and instead gain a U-tail.
- 3. The oligo-U tail triggers mRNA decay by serving as a general mark that is recognized by downstream decay factors.

Lim*, Ha*, Chang* et al., Cell, 2014

- 1. TENT4A/B add mixed tails (A >> G > C, U)to poly(A) mRNAs.
- 2. Non-adenosine residues slow down CNOT6L/7 deadenylases.
- 3. The mixed tail protects and stabilizes mRNAs from deadenylation.

Lim*, Kim*, Lee* et al., *Science*, 2018

TAIL-seq 3' adaptor

mTAIL-seq 3' adaptor (hairpin)

mTAIL-seq accurately measures poly(A) tail length with low input samples

 \rightarrow Dynamic poly(A) tail regulation in oocyteto-embryo development

Lim*, Lee* et al., *Genes Dev*, 2016

TAIL-seq and mTAIL-seq have been applied to various biological studies

mRNA metabolism

(Deadenylation, decay, and translation)

Cell cycle regulation

Development (Oogenesis and embryogenesis)

Viral infection

T cell quiescence

Lima et al., Nat Str Mol Biol, 2017 Yi*, Park* et al., *Mol Cell*, 2018 Eisen*, Eichhorn*, Subtelny* et al., Mol Cell, 2020 Xiang and Bartel, eLife, 2021

> Park*, Yi*, Kim* et al., Mol Cell, 2016 Liu et al., iScience, 2020

Lim*, Lee* et al., Genes Dev, 2016 Morgan*, Much* et al., *Nature*, 2017 Chang*, Yeo* et al., Mol Cell, 2018

Batra*, Stark* et al., Nat Str Mol Biol, 2016 Kim*, Lee*, Jung*, Yeo* et al., Nat Str Mol Biol, 2020

Hwang*, Lim* et al., Science, 2020

T cells maintain quiescence in the absence of activation stimuli

Modified from Sharma et al., Nat Rev Cancer, 2011

mRNA destabilization by BTG1/2 maintains T cell quiescence

WT naive T cells: Quiescence

1. BTG1/2 promote global mRNA deadenylation and degradation in naive T cells. 2. Loss of Btg1/2 results in exit of T cell quiescence by increasing global mRNA levels. 3. Active mRNA turnover might be a crucial feature for maintaining quiescence.

Btg1/2 double KO : Exit of quiescence

Hwang*, Lim* et al., Science, 2020

Transient serum starvation selectively decreases IgE switching

Stress hormone (glucocorticoids)

Stress hormones, glucocorticoids, induce natural IgE

- 1) Glucocorticoids induce natural IgE both *in vivo* and *ex vivo* without antigenic challenge.
- 2) Glucocorticoids reinforce CD40 signaling and are dependent on IL-4/STAT6.
- 3) Natural IgE-producing B cells are localized in mLNs *in vivo*.
- 4) Natural IgE induced by glucocorticoids may have a protective role in preventing allergic reactions.

Lim*, Lin*, Hong* et al., J Exp Med, 2022

Future plans in the college of veterinary medicine

- I will investigate how cells or animals adapt to stress conditions.
- Animals have a variety of digestive systems. I aim to understand how immune cells maintain homeostasis, especially in the gut. I am interested in the role of immune cells when gut homeostasis is perturbed, such as dysbiosis or food poisoning.
- 2. In response to stress, some animals exhibit a highly stress-resistant state, like hibernation or dormancy. I am interested in the molecular mechanisms how cells or animals cope with extreme environmental conditions.

Acknowledgements

Collaborators RNomics Lab (SNU) Flavell Lab (Yale) Medzhitov Lab (Yale)

V. Narry Kim Hyeshik Chang Minju Ha Mihye Lee Dongwan Kim Young-suk Lee

Richard A. Flavell

Soo Seok Hwang

SNU/Institute for Basic Science Yale School of Medicine Howard Hughes Medical Institute Human Frontier Science Program Jane Coffin Childs Memorial Fund

Ruslan Medzhitov Erica Lin Jun Young Hong

Macrogen **Yale Center for Genome Analysis Cold Spring Harbor Lab Amazon Web Service** Wald's Science NIH Eugene Koonin Sergei Mekhedov RAS Andrew Goodkov Alexander Kudryavtsev

Thank you!